

OBn

E.e. = 100% $[\alpha]_{\rm D} = -21.9$ (c 5.6, CHCl₃) Source of chirality: asymmetric synthesis Absolute configuration: 4R,2'R,3'S,4'S

C24H29NO5 [4R,3(2'R,3'S,4'S)]-4-Benzyl-3-(5'-benzyloxy-3'-hydroxy-2',4'-dimethylpentanoyl)-2-oxazolidinone Angela Zampella, Maria Sorgente and Maria Valeria D'Auria*

Tetrahedron: Asymmetry 13 (2002) 681

E.e. = 100% $[\alpha]_D = -20$ (*c* 0.1, CHCl₃) Source of chirality: asymmetric synthesis Absolute configuration: 2R, 3R, 4S

 $\bar{\tilde{O}}H$ $\overset{\|}{O}$ $C_{10}H_{20}O_3$ (2*R*,3*R*,4*S*)-3-Hydroxy-2,4,6-trimethylheptanoic acid

G. V. M. Sharma,* K. Raman Kumar, Punna Sreenivas, Palakodety Radha Krishna and Mukund S. Chorghade

Tetrahedron: Asymmetry 13 (2002) 687

TBDMSO

 $C_{21}H_{34}O_5Si$ 1-(4'-Methoxyphenyl)-2,3-*O*-isopropylidene- β -D-ribofuranoside

 $[\alpha]_{D} = -17.7$ (*c*, 0.9, CHCl₃) Source of chirality: asymmetric synthesis Absolute configuration: 1S, 2S, 3S, 4R

E.e. = 100%

G. V. M. Sharma,* K. Raman Kumar, Punna Sreenivas, Palakodety Radha Krishna and Mukund S. Chorghade

Tetrahedron: Asymmetry 13 (2002) 687

E.e. = 100% $[\alpha]_D = -10.5$ (*c*, 1.6, CHCl₃) Source of chirality: asymmetric synthesis Absolute configuration: 1R, 2R, 3R, 4R, 5R

 $C_{18}H_{22}F_2O_5$ l-(2',4'-Difluorophenyl)-2,3:5,6-di- ${\it O}$ -isopropylidene- α -D-mannofuranoside

Tetrahedron: Asymmetry 13 (2002) 687

G. V. M. Sharma,* K. Raman Kumar, Punna Sreenivas, Palakodety Radha Krishna and Mukund S. Chorghade

E.e. = 100% $[\alpha]_D = 12.4$ (*c*, 1.2, CHCl₃) Source of chirality: asymmetric synthesis Absolute configuration: 1S, 2S, 3S, 4R, 5R

 $C_{16}H_{22}O_5S$ 1-(2'-Thiophenyl)-2,3:5,6-di- ${\it O}$ -isopropylidene- α -D-mannofuranoside

G. V. M. Sharma,* K. Raman Kumar, Punna Sreenivas, Palakodety Radha Krishna and Mukund S. Chorghade

Tetrahedron: Asymmetry 13 (2002) 687

E.e. = 100%[α]_D = 19.4 (*c*, 1.2, CHCl₃) Source of chirality: asymmetric synthesis Absolute configuration: 1R, 2R, 3R, 4R, 5R

 $C_{19}H_{26}O_5$ 1-(4'-Methylphenyl)-2,3:5,6-di-*O*-isopropylidene- α -D-mannofuranoside

G. V. M. Sharma,* K. Raman Kumar, Punna Sreenivas, Palakodety Radha Krishna and Mukund S. Chorghade

Tetrahedron: Asymmetry 13 (2002) 687

E.e. = 100% $\begin{bmatrix} \alpha \end{bmatrix}_{D} = -43.3 \ (c, \ 1.7, \ CHCl_{3}) \\ Source of chirality: asymmetric synthesis \\ Absolute configuration: 2R,3R,4S,5R,2'R,5'R \\ C_{18}H_{24}O_{5} \\ (2R,3R,4S,5R)-2,3-O-Isopropylidene-4-methoxy-5-[(2'R,5'R)-4-phenyl-tetrahydrofuryl]tetrahydrofuran \end{bmatrix}$

Ying-Chuan Wang, Tzung-Min Lu, Shanmugham Elango, Chao-Kuo Lin, Chia-Tzung Tsai and Tu-Hsin Yan* Tetrahedron: Asymmetry 13 (2002) 691

E.e. = 100% $[\alpha]_D = +91.0$ (c 0.5, CH₂Cl₂) Source of chirality: ketopinic acid

Ying-Chuan Wang, Tzung-Min Lu, Shanmugham Elango, Chao-Kuo Lin, Chia-Tzung Tsai and Tu-Hsin Yan*

C₁₀H₁₅NO₃ (+)-Ketopinohydroxamic acid

Tetrahedron: Asymmetry 13 (2002) 691

E.e. = 100% $[\alpha]_D = +37.6$ (c 2.0, CH₂Cl₂) Source of chirality: asymmetric synthesis

 $\label{eq:c16} C_{16}H_{21}NO_3 \\ (1S,4R)\mbox{-}3\mbox{-}(1S,2R)\mbox{-}2\mbox{-}0x\mbox{-}1\mbox{-}b\mbox{ornylcarbonyl})\mbox{-}3\mbox{-}aza\mbox{-}2\mbox{-}oxabicyclo[2.2.2]\mbox{-}5\mbox{-}octene$

Ying-Chuan Wang, Tzung-Min Lu, Shanmugham Elango, Chao-Kuo Lin, Chia-Tzung Tsai and Tu-Hsin Yan* Tetrahedron: Asymmetry 13 (2002) 691

E.e. = 100% $[\alpha]_D = +40.6$ (c 2.0, CH₂Cl₂) Source of chirality: asymmetric synthesis

O NO

C₁₇H₂₃NO₃ (1*R*,5*S*)-2-((1*S*,2*R*)-2-Oxo-1-bornylcarbonyl)-7-aza-6-oxabicyclo[3.2.2]-8-nonene

Ying-Chuan Wang, Tzung-Min Lu, Shanmugham Elango, Chao-Kuo Lin, Chia-Tzung Tsai and Tu-Hsin Yan* Tetrahedron: Asymmetry 13 (2002) 691

E.e. = 100% $[\alpha]_D = -24.5$ (*c* 1.1, MeOH) Source of chirality: asymmetric synthesis

C₆H₁₀ClNO₃ (1*S*,4*R*)-3-Aza-2-oxabicyclo[2.2.2]-5-octene hydrochloride

Ying-Chuan Wang, Tzung-Min Lu, Shanmugham Elango, Chao-Kuo Lin, Chia-Tzung Tsai and Tu-Hsin Yan* Tetrahedron: Asymmetry 13 (2002) 691

E.e. = 100%[α]_D = -22.5 (*c* 0.8, H₂O) Source of chirality: asymmetric synthesis

C₇H₁₂ClNO₃ (1*R*,5*S*)-7-Aza-6-oxabicyclo[3.2.2]-8-nonene hydrochloride

Byung Tae Cho,* Ok Kyoung Choi and Dong Jun KimTetrahedron: Asymmetry 13 (2002) 697GHE.e. = 92% (by HPLC analysis on Whelk-O1 chiral column) $[\alpha]_{D}^{22} = +62.6 (c \ 1.33, CHCl_3)$ Source of chirality: asymmetric reduction
Absolute configuration: S $C_{12}H_{18}OS$ (S)-2-(n-Butylsulfanyl)-1-phenylethanol

Byung Tae Cho,* Ok Kyoung Choi and Dong Jun Kim	Tetrahedron: Asymmetry 13 (2002) 697
	E.e. = 99% (by HPLC analysis on Whelk-O1 chiral column) $[\alpha]_D^{22} = -17.1$ (<i>c</i> 1.16, CHCl ₃) Source of chirality: asymmetric reduction Absolute configuration: <i>S</i> (by comparison with
$C_{15}H_{16}OS$ (<i>S</i>)-2-(<i>p</i> -Tolylsulfanyl)-1-phenylethanol	literature data)

 Byung Tae Cho,* Ok Kyoung Choi and Dong Jun Kim
 Tetrahedron: Asymmetry 13 (2002) 697

 E.e. = 99% (by HPLC analysis on Whelk-O1 chiral column)
 E.e. = 99% (by HPLC analysis on Whelk-O1 chiral column)

 $\zeta_{16}H_{18}OS$ $[\alpha]_{D}^{22} = -30.6$ (c 1.2, CHCl₃)

 Source of chirality: asymmetric reduction Absolute configuration: S

 (S)-2-(p-Tolylsulfanyl)-1-p-tolylethanol

Byung Tae Cho,* Ok Kyoung Choi and Dong Jun Kim	Tetrahedron: Asymmetry 13 (2002) 697
E.co	e. >99% (by HPLC analysis on Whelk-O1 chiral umn)
<u></u> ΩH [<i>α</i>]	$_{\rm D}^{22} = -45.1 \ (c \ 1.03, \ {\rm CHCl}_3)$
So So	urce of chirality: asymmetric reduction
CI At	solute configuration: S
C ₁₅ H ₁₅ ClOS	
(S)-2-(p-Tolylsulfanyl)-1-(p-chlorophenyl)ethanol	

Tetrahedron: Asymmetry 13 (2002) 697 Byung Tae Cho,* Ok Kyoung Choi and Dong Jun Kim E.e. >99% (by HPLC analysis on Whelk-O1 chiral column) QН $[\alpha]_{D}^{22} = -13.1 \ (c \ 1.15, \ \text{CHCl}_{3})$ Source of chirality: asymmetric reduction Absolute configuration: S C15H15FOS (S)-2-(p-Tolylsulfanyl)-1-(p-fluorophenyl)ethanol

A144

Byung Tae Cho,* Ok Kyoung Choi and Dong Jun Kim	Tetrahedron: Asymmetry 13 (2002) 697
E c	.e. = 97% (by HPLC analysis on Whelk-O1 chiral plumn)
<u>О</u> Н [4	$l_{\rm D}^{22} = -30.4 \ (c \ 2.27, \ {\rm CHCl}_3)$
S S S S S S S S S S S S S S S S S S S	ource of chirality: asymmetric reduction
	bsolute configuration: S
$C_{13}H_{14}OS$ (S)-2-(p-Tolylsulfanyl)-1-(2'-furyl)ethanol	

Byung Tae Cho,* Ok Kyoung Choi and Dong Jun Kim	Tetrahedron: Asymmetry 13 (2002) 697
E.e. = Chira QH f f GH f GH	=88% (by HPLC analysis of its sulfone on leel OD chiral column) =+80.0 (c 1.35, CHCl ₃) ze of chirality: asymmetric reduction lute configuration: S

 Byung Tae Cho,* Ok Kyoung Choi and Dong Jun Kim
 Tetrahedron: Asymmetry 13 (2002) 697

 E.e. = 81% (by HPLC analysis on Chiralcel OD-H chiral column)
 E.e. = 81% (by HPLC analysis on Chiralcel OD-H chiral column)

 $\downarrow \downarrow \downarrow \downarrow \downarrow$ \Box_{D} Source of chirality: asymmetric reduction Absolute configuration: S

 (S)-1-(p-Tolylsulfanyl)-4-methyl-2-pentanol
 <math>G(S) = 1-(p-Tolylsulfanyl) - 4-methyl-2-pentanol

C₁₈H₁₄O (5a*S*)-Methyl-5,5a-dihydrobenzo[*b*]fluoren-6-one

and Kaoru Fuji

C19H16O

(5aS)-Ethyl-5,5a-dihydrobenzo[b]fluoren-6-one

Tetrahedron: Asymmetry 13 (2002) 721

E.e. = 82% $[\alpha]_{D}^{20}$ = +65.0 (*c* 2.30, CHCl₃, 63% e.e.) Source of chirality: asymmetric synthesis from (*S*)-(-)-1,1'-bi-2-naphthol Absolute configuration: *S*

Ashutosh V. Bedekar, Toshiyuki Watanabe, Kiyoshi Tanaka* and Kaoru Fuji

Ashutosh V. Bedekar, Toshiyuki Watanabe, Kiyoshi Tanaka*

Tetrahedron: Asymmetry 13 (2002) 721

E.e. = 86% $[\alpha]_D^{16}$ = +184.0 (*c* 0.44, CHCl₃, 100% e.e.) Source of chirality: asymmetric synthesis from (*S*)-(-)-1,1'-bi-2-naphthol Absolute configuration: *S*

C₂₀H₁₈O (5aS)-Isopropyl-5,5a-dihydrobenzo[*b*]fluoren-6-one

Piotr Kiełbasiński,* Małgorzata Albrycht, Jerzy Łuczak and Marian Mikołajczyk

Tetrahedron: Asymmetry 13 (2002) 735

E.e. = 89% $[\alpha]_{D}^{20} = -21.5 \ (c = 1.1, \ CHCl_3)$ Source of chirality: enzymatic kinetic resolution Absolute configuration: *R*

 $C_8H_{11}O_3P$ Methyl hydroxymethanephenylphosphinate

Piotr Kiełbasiński,* Małgorzata Albrycht, Jerzy Łuczak and Marian Mikołajczyk

Tetrahedron: Asymmetry 13 (2002) 735

E.e. = 89% $[\alpha]_{D}^{20} = +49.8 \ (c=2.2, \text{ CHCl}_{3})$ Source of chirality: enzymatic kinetic resolution Absolute configuration: *S*

 $\label{eq:c10} C_{10}H_{13}O_4P$ Methyl acetoxymethanephenylphosphinate

Piotr Kiełbasiński,* Małgorzata Albrycht, Jerzy Łuczak and Marian Mikołajczyk E.e. = 79% $[\alpha]_{2^0}^{2^0} = -12.1 \ (c = 1.9, CHCl_3)$ Source of chirality: enzymatic kinetic resolution Absolute configuration: *R* Ethyl hydroxymethanephenylphosphinate Piotr Kiełbasiński,* Małgorzata Albrycht, Jerzy Łuczak and Marian Mikołajczyk

E.e. = 83% $[\alpha]_{D}^{20}$ = +39.6 (*c* = 2.4, CHCl₃) Source of chirality: enzymatic kinetic resolution Absolute configuration: *S*

Eto Ph CH₂OAc $C_{11}H_{15}O_4P$ Ethyl acetoxymethanephenylphosphinate

Piotr Kiełbasiński,* Małgorzata Albrycht, Jerzy Łuczak and Marian Mikołajczyk

Tetrahedron: Asymmetry 13 (2002) 735

E.e. = 95% $[\alpha]_{D}^{20} = -21.3$ (*c* = 1.2, CHCl₃) Source of chirality: enzymatic kinetic resolution Absolute configuration: *R*

 $C_{10}H_{15}O_3P$ *i*-Propyl hydroxymethanephenylphosphinate

∕сн₂он

Phi

Piotr Kiełbasiński,* Małgorzata Albrycht, Jerzy Łuczak and Marian Mikołajczyk

E.e. = 80% $[\alpha]_{20}^{20} = +31.0 \ (c = 2.1, \text{ CHCl}_3)$

Tetrahedron: Asymmetry 13 (2002) 735

Source of chirality: enzymatic kinetic resolution Absolute configuration: S

 $\label{eq:c12} C_{12}H_{17}O_4P$ *i*-Propyl acetoxymethanephenylphosphinate

Piotr Kiełbasiński,* Małgorzata Albrycht, Jerzy Łuczak and Marian Mikołajczyk E.e. = 43% $[\alpha]_D^{20} = -18.7 \ (c = 1.6, C_6H_6)$ Source of chirality: enzymatic kinetic resolution Absolute configuration: *S t*-Butylhydroxymethylphenylphosphine oxide Piotr Kiełbasiński,* Małgorzata Albrycht, Jerzy Łuczak and Marian Mikołajczyk

 $C_{13}H_{19}O_4P$

Acetoxymethyl-t-butylphenylphosphine oxide

E.e. = 53% $[\alpha]_D^{20} = +7.0 \ (c = 2.1, \ C_6H_6)$ Source of chirality: enzymatic kinetic resolution Absolute configuration: *R*

A155

 $C_{12}H_{18}F_3O_3$ (-)-(2*R*,3*R*)-2-Phenyl-3-methyl-1,4-butanediol

О,,, (CH₂)₇, ОВп

 $C_{18}H_{28}O_2$ (+)-(*R*)-2-(9-Benzyloxy-nonyl)-oxirane

Tetrahedron: Asymmetry 13 (2002) 779

 $[\alpha]_{D}^{23} = +0.7$ (c 1.10, CHCl₃) Source of chirality: kinetic resolution reaction Absolute configuration: 2*R*

ŌН (CH₂)7_OBn HO, C18H30O3

(+)-(*R*)-11-Benzyloxy-undecane-1,2-diol

Sharon Chow and William Kitching*

Tetrahedron: Asymmetry 13 (2002) 779

 $[\alpha]_D^{23} = +6.0$ (c 1.18, CHCl₃) Source of chirality: kinetic resolution reaction Absolute configuration: 3*S*

C₁₉H₃₂O₂ (+)-(S)-12-Benzyloxy-dodecan-3-ol

(CH₂)_{7.} OBn

OH

Sharon Chow and William Kitching*

Tetrahedron: Asymmetry 13 (2002) 779

 $[\alpha]_D^{23} = -5.4$ (*c* 0.97, CHCl₃) Source of chirality: kinetic resolution reaction Absolute configuration: 3R

.(CH₂)7__OAc

 $C_{15}H_{30}O_2$ (-)-(*R*)-10-Methyldodecyl acetate

Sharon Chow and William Kitching*

Tetrahedron: Asymmetry 13 (2002) 779

 $[\alpha]_D^{23} = +1.0$ (*c* 0.97, CHCl₃) Source of chirality: kinetic resolution reaction Absolute configuration: 4*S*

QН .OBn (CH₂)₇

C₂₀H₃₄O₂ (+)-(S)-13-Benzyloxy-tridecan-4-ol

Tetrahedron: Asymmetry 13 (2002) 779

 $[\alpha]_{D}^{23} = -2.4$ (*c* 0.90, CHCl₃) Source of chirality: kinetic resolution reaction Absolute configuration: 4R

(CH₂)₇OBn C21H36O

(-)-(*R*)-1-Benzyloxy-10-methyltridecane

Sharon Chow and William Kitching*

._(CH,), J

C₁₄H₂₈O (-)-(*R*)-(-)-10-Methyltridecan-2-one Tetrahedron: Asymmetry 13 (2002) 779

 $[\alpha]_D^{23} = -1.6$ (*c* 0.70, CHCl₃) Source of chirality: kinetic resolution reaction Absolute configuration: 4R

Sharon Chow and William Kitching* C_4H_9 $C_{14}H_{24}O_2$

 $C_{14}\Pi_{24}O_2$ (-)-(*R*)-2,2-Dimethyl-4-non-4-ynyl-[1,3]dioxolane Tetrahedron: Asymmetry 13 (2002) 779

 $[\alpha]_{D}^{23} = -12.7$ (*c* 1.42, CHCl₃) Source of chirality: kinetic resolution reaction Absolute configuration: 4R

Sharon Chow and William Kitching*

C₁₁H₂₀O (-)-(*R*)-Undec-6-yn-2-ol

Tetrahedron: Asymmetry 13 (2002) 779

 $[\alpha]_D^{23} = -8.0$ (c 0.84, CHCl₃) Source of chirality: kinetic resolution reaction Absolute configuration: 2R

Sharon Chow and William Kitching* $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{23} = +20.7 \text{ (c } 1.03, \text{ CHCl}_3) \\ \text{Source of chirality: kinetic resolution reaction} \\ \text{Absolute configuration: } 1R,5R \\ \underbrace{C_9H_{16}O_2}_{(+)-(1R,5R)-1,5-\text{Bisoxiranyl-pentane}} \end{bmatrix}$

Sharon Chow and William Kitching*

Sharon Chow and William Kitching*

Tetrahedron: Asymmetry 13 (2002) 779

 $[\alpha]_D^{23} = +21.9$ (*c* 1.15, CHCl₃) Source of chirality: kinetic resolution reaction Absolute configuration: 4S,5R

 $\label{eq:C12H22O3} C_{12}H_{22}O_3 \\ (+)-(4S,5R)-2,2-Dimethyl-4-(5-oxiranyl-pentyl)-1,3-dioxolane$

Tetrahedron: Asymmetry 13 (2002) 779

 $[\alpha]_D^{23} = +25.1$ (*c* 1.88, CHCl₃) Source of chirality: kinetic resolution reaction Absolute configuration: 1*S*,5*S*

C₁₅H₂₈O₄ (+)-(1*S*,5*S*)-Bis(2,2-dimethyl-1,3-dioxolan-4-yl)-pentane

Tetrahedron: Asymmetry 13 (2002) 779

 $[\alpha]_{D}^{23} = -13.3$ (*c* 1.00, CHCl₃) Source of chirality: kinetic resolution reaction Absolute configuration: $2R_{s}R$

OH (CH₂)

C₁₁H₂₄O (-)-(2*R*,8*R*)-8-Methyl-decan-2-ol

Tetrahedron: Asymmetry 13 (2002) 779

 $[\alpha]_D^{23} = -7.2$ (c 0.70, CHCl₃) Source of chirality: kinetic resolution reaction Absolute configuration: 1R,7R

C₁₄H₂₈O₂ (-)-(1*R*,7*R*)-1,7-Dimethylnonyl propanoate

OCOEt

Sharon Chow and William Kitching*

Sharon Chow and William Kitching* $C_{3}H_{7}$ $C_{15}H_{31}O_{2}$ Tetrahedron: Asymmetry 13 (2002) 779

 $[\alpha]_D^{23} = -15.2$ (*c* 1.20, CHCl₃) Source of chirality: kinetic resolution reaction Absolute configuration: 4S, 6R

Sharon Chow and William Kitching*

(-)-(4S,6R)-2,2-Dimethyl-4-(6-methyl-nonyl)-[1,3]dioxolane

OH (CH₂)₃

C₁₆H₃₃O (-)-(6*S*,12*R*)-12-Methylpentadec-1-en-6-ol

Tetrahedron: Asymmetry 13 (2002) 779

 $[\alpha]_D^{23} = -0.1$ (c 1.30, CHCl₃) Source of chirality: kinetic resolution reaction Absolute configuration: 6S, 12R

Tetrahedron: Asymmetry 13 (2002) 779

 $[\alpha]_{D}^{23} = -0.4$ (c 0.40, CHCl₃)

Absolute configuration: 6R,12R

Source of chirality: kinetic resolution reaction

(CH₂)₃ C_3H_7 C17H35O

(-)-(6R,12R)-6,12-Dimethylpentadecan-2-one

Sharon Chow and William Kitching*

Tetrahedron: Asymmetry 13 (2002) 779

 $[\alpha]_D^{23} = -16.4$ (*c* 0.30, CHCl₃) Source of chirality: kinetic resolution reaction Absolute configuration: 1S,8S

 $C_{12}H_{22}O_2$ (-)-(1S,8S)-1,8-Bisoxiranyl-octane

 $(CH_2)_{\ell}$

Sharon Chow and William Kitching* ŌН (CH₂), HO $C_{12}H_{26}O_4$

(+)-(2R,11R)-Dodecane-1,2,11,12-tetrol

Sharon Chow and William Kitching*

ОН

(CH₂)

Tetrahedron: Asymmetry 13 (2002) 779

 $[\alpha]_{D}^{23} = +31.9 \ (c \ 0.51, \ MeOH)$ Source of chirality: kinetic resolution reaction Absolute configuration: 2R,11R

Tetrahedron: Asymmetry 13 (2002) 779

 $[\alpha]_{D}^{23} = -17.1$ (c 1.59, CHCl₃) Source of chirality: kinetic resolution reaction Absolute configuration: 3R,11R

Sharon Chow and William Kitching*

C₁₃H₂₄O₂ (+)-(1*R*,9*R*)-1,9-Bisoxiranyl-nonane

Tetrahedron: Asymmetry 13 (2002) 779

 $[\alpha]_D^{23} = +11.1$ (*c* 1.16, CHCl₃) Source of chirality: kinetic resolution reaction Absolute configuration: 1R,9R

Sharon Chow and William Kitching*

Tetrahedron: Asymmetry 13 (2002) 779

 $[\alpha]_{D}^{23} = -11.5$ (c 0.40, MeOH) Source of chirality: kinetic resolution reaction Absolute configuration: 2S,12R

(CH₂)

 $\label{eq:c13} C_{13} H_{26} O_3 \\ (-)-(2S,12R)-12-Oxiranyl-dodecane-1,2-diol$

Tetrahedron: Asymmetry 13 (2002) 779

OH QН HO .OH

C₁₃H₂₈O₄ (-)-(2*S*,12*S*)-Tridecane-1,2,12,13-tetrol

Sharon Chow and William Kitching*

 $[\alpha]_{D}^{23} = -26.1$ (*c* 0.70, MeOH) Source of chirality: kinetic resolution reaction Absolute configuration: 2S, 12S

Tetrahedron: Asymmetry 13 (2002) 779

 $[\alpha]_D^{23} = +11.1$ (c 0.76, MeOH) Source of chirality: kinetic resolution reaction Absolute configuration: 2S, 12S

 $\begin{array}{c} OH \\ (CH_2)_7 \\ C_{13}H_{28}O_2 \end{array}$

(+)-(2*S*,12*S*)-Tridecane-2,12-diol

(+)-(2S,12S)-2,12-Diacetoxytridecane

Sharon Chow and William Kitching* $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{23} = +1.8 \text{ (c 1.21, CHCl}_3) \\ \text{Source of chirality: kinetic resolution reaction} \\ \text{Absolute configuration: } 2S,12S \\ \underbrace{OAc}_{C_{17}H_{32}O_4} \\ \underbrace{OAc}_{C_{17}H_{32}O_4} \\ \end{bmatrix}$